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1 Introduction

In 1939, Oppenheimer and Volkoff presented a paper on the equilibrium masses of
neutron stars, in which they noted that the maximum allowable mass is ∼ 0.7M⊙. Since
then, the masses of observed neutron stars were measured to be well above this figure,
indicating that nuclear repulsion has to be considered for stars of small radii. In this
project, neutron star models were constructed using five different equations of state,
each based on a different hypothesis of nuclear interaction. The resulting configurations
of the maximum allowable mass were then compared.

2 Equations of hydrostatic equilibrium

The relativistic equations of hydrostatic equilibrium are

dMr

dr
= 4πr2

ǫ

c2
and

dP

dr
= −

G(ǫ/c2 + P/c2)(Mr + 4πr3P/c2)

r(r − 2GMr/c2)
.

New units for mass u and length r are defined as follows:

[r] =
1

π

√

hG

c3

(

h

mc

)(

c2

Gm

)

= 13.6831km,

[u] =
1

π

(

hc

G

)
3

2 1

m2
= 9.2661M⊙,

where m is the neutron mass. The equations of hydrostatic equilibrium using these new
units become the expressions of Oppenheimer and Volkoff:

du

dr
= 4πǫr2 and

dt

dr
= −4πr

P + ǫ

1 − 2u
r

(

P +
u

4πr3

)

(

dp

dt

)−1

,

where t is a parameter to be defined later.
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The boundary condition at the centre of the star is defined at t = t0, where r = 0 and
u = 0. For the computer program, r = 0 presents a problem in the second equation of
hydrostatic equilibrium. To resolve the problem, a small value of radius r = rc was used.
The following expression was then used to obtain the corresponding boundary value for
the mass uc at the centre,

uc =
4π

3
r3

cǫ(t0), where
du

dr
= 4πǫ(t)r2.

3 Equations of state

Five different equations of state (EOS) were used to compute the neutron star models.
The first four were presented by Inman in 1964. The last and more modern equation of
state was presented by Douchin and Haensel in 2001.

The energy density ǫ and pressure P can each be written as the sum of its kinetic and
potential component, subscript T and ν respectively:

ǫ = ǫT + ǫν and P = PT + Pν .

For completely degenerate neutron gas, the kinetic pressure is

PT =
πm4c5

3h3
f(x), where f(x) = x(2x2 − 3)

√
x2 + 1 + 3 sinh−1 x.

The parameter x can be written in terms of the parameter t by the relation x = sinh t/4,
then f(x) becomes

f(t) =
1

4
sinh t − 2 sinh

t

2
+

3

4
t.

The kinetic energy density can be expressed as ǫT = ǫkin + ǫrest, where

ǫkin =
πm4c5

3h3
[8x3(

√
x2 + 1 − 1) − f(x)],

ǫrest = nmc2 =
πm4c5

3h3
[8x3], for n =

8πm3c3

3h3
x3.

Then the kinetic energy density can be written in terms of the parameter x:

ǫT = ǫkin + ǫrest =
πm4c5

3h3
h(x), where

h(x) = [8x3(
√

x2 + 1 − 1) − f(x) + 8x3] =
πm4c5

3h3
[8x3

√
x2 + 1 − f(x)],
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and in terms of the parameter t:

h(t) =
3

4
(sinh t − t).

The energy density ǫ and pressure P have the same unit of erg/cm−3. If we now define
a new unit of energy density

[ǫ] = [P ] ≡
1

6

mc2

4

3
π( h

2πmc
)3

=
π2m4c5

h3
= 6.4658(1036)

erg

cm3
,

then the kinetic energy density and pressure can be written in this new unit as:

ǫT =
1

4π
(sinh t − t) and PT =

1

12π

(

sinh t − 8 sinh
t

2
+ 3t

)

.

The first four EOS presented by Inman uses the same kinetic energy density and
pressure shown above.

3.1 EOS 1

EOS 1 is the case of neutrons without interactions, presented by Oppenheimer and
Volkoff in 1939:

ǫν = Pν = 0.

3.2 EOS 2

EOS 2 is derived from a nuclear potential given by Skyrme in 1959, based on the
many-body theory of nuclear matter.

ǫν =
1

4π

(

23.9 sinh8 t

4
− 10.1 sinh6 t

4

)

,

Pν =
1

4π

(

39.9 sinh8 t

4
− 10.1 sinh6 t

4

)

.

3.3 EOS 3

EOS 3 is based on Zel’dovich’s ”hard core” hypothesis of nuclear interactions in 1959.
Strong nuclear repulsion is present at small distances. The parameter α

β
was taken as 1

in the model construction.

ǫν =
16

9π2

α

β
sinh5 t

4
,

Pν =
32

27π2

α

β
sinh5 t

4
.



Eric Hsiao 0227050 4

3.4 EOS 4

EOS 4 is based on Zel’dovich’s equations of state in 1961 that is compatible with the
theory of relativity. The parameter γ was taken as 3 in the model construction.

ǫν = Pν =
16

9π2
γ sinh6 t

4
.

3.5 EOS 5

The neutron star crust and liquid core equations of state were calculated and
presented by Douchin and Haensel as data sets in nucleon number density n in fm−3,
density ρ in g/cm−3, pressure P in erg/cm−3 and a dimensionless adiabatic index Γ. It
is convenient to convert these quantities to t, ǫ, P and dP

dt
in the units used in the first

four equations of state. The adiabatic index is defined as

Γ =
n

P

dP

dn
, where n =

8πm3c3

3h3
x3 =

8πm3c3

3h3
sinh3 t

4
.

The parameter t can then be written in terms of the nucleon number density:

t = 4 sinh−1





(

3h3

8πm3c3

)
1

3

n
1

3



.

Knowing t for each data point, dP
dt

can be determined from given Γ and P :

dP

dt
=

dP

dn

dn

dt
=

P

n
Γ

dn

dt
=

3

4

ΓP

tanh t/4
.

4 Numerical Methods

The numerical methods used in the neutron star models programs are included in this
section.

4.1 Runge-Kutta method

To solve the two equations of hydrostatic equilibrium simultaneously, the fourth-order
Runge-Kutta method was used. Let

du

dr
= f(r, t) and

dt

dr
= g(r, u, t).

Then the Runge-Kutta method adds four incremental components symmetrically to
solve for u and t:

un+1 = un + 1

6
(k1 + 2k2 + 2k3 + k4) tn+1 = tn + 1

6
(l1 + 2l2 + 2l3 + l4)

k1 = hf(rn, tn) l1 = hg(rn, un, tn)
k2 = hf(rn + h

2
, tn + l1

2
) l2 = hg(rn + h

2
, un + k1

2
, tn + l1

2
)

k3 = hf(rn + h
2
, tn + l2

2
) l3 = hg(rn + h

2
, un + k2

2
, tn + l2

2
)

k4 = hf(rn + h, tn + l3) l4 = hg(rn + h, un + k3, tn + l3).
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The parameter h is the r increment and is associated with the error of the calculation as
∼ h3.

4.2 Interpolation

For EOS 5, a set of data points was given instead of analytical functions. The data
was in the form xi and yi, where i is the index number. To obtain reasonable value of y
for a given value of x, the index i that gives the closest values between x(i) and x was
first located. The interpolation formula then estimates the values of y with the data
points indexed i − 1, i and i + 1:

y(x) =
(x − xi)(x − xi+1)

(xi−1 − xi)(xi−1 − xi+1)
yi−1

+
(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)
yi +

(x − xi−1)(x − xi)

(xi+1 − xi−1)(xi+1 − xi)
yi+1.

5 Results

The programs used for the model constructions were attached. The Runge-Kutta
calculations run from an initial value of t0 and stops when t = 0.001t0, and the values of
r and u were recorded at this point.

The results were plotted in Figure 1. EOS 1 model, without accounting for nuclear
interactions, had the lowest maximum allowable mass ∼ 0.7M⊙. When nuclear
interactions were considered, the maximum allowable mass increases to over 2M⊙ in the
case of EOS 5.

Figure 2 plots the mass of the neutron stars against their central densities. It was
shown that the model is dynamically unstable for the part of figure where dM

dρc

< 0.
Compact objects with mass greater than the maximum allowable mass cannot be
neutron stars. The maximum mass for a neutron star were lifted from 0.7M⊙ when
nuclear repulsion is considered. The configuration of maximum mass of static neutron
stars for each equation of state was summarized in the following table:

eos t0 M [M⊙] R[km] ρc[1014 g/cm3] Pc[1036 erg/cm3]
1 3.03 0.710 9.18 41.7 0.359
2 2.93 1.70 7.99 44.4 2.38
3 2.47 1.14 13.2 21.1 0.214
4 2.45 1.59 12.8 21.9 0.380
5 2.58 2.05 9.88 28.3 1.36
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Figure 3 illustrates the properties of the equations of state in a log10 P vs. log10 ρ
plot. The EOS 2 graph has a similar shape to the more modern EOS 5. The other three
equations of state have almost straight lines with different slopes.

6 Conclusion

The equations of state that include the effects of nuclear interactions lift the maximum
allowable mass of a neutron star from the Oppenheimer-Volkoff mass of 0.7M⊙. The
more modern EOS 5 gives a maximum mass of 2.05M⊙.
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